

IKangourou della Matematica 2021 finale nazionale italiana Cervia, 25 settembre 2021

LIVELLO JUNIOR

Tutte le risposte devono essere giustificate

- **J1**. (5 punti) Hai un sacchetto di coriandoli e vorresti sapere quanti sono, almeno approssimativamente. Pensi di usare la seguente strategia:
 - ne estrai 50 e li contraddistingui con un segno, quindi li rimetti nel sacchetto e mescoli tutti i coriandoli in modo che quelli che hai contrassegnato si possano distribuire uniformemente all'interno del sacchetto;
 - ne estrai quindi 70 a caso e scopri che, fra questi 70, solo due sono stati contrassegnati da te.

Sulla base di questo esperimento, qual è un numero attendibile per i coriandoli contenuti nel sacchetto?

Risposta: 1750.

Soluzione. Se i coriandoli contrassegnati si sono distribuiti in modo uniforme all'interno del sacchetto e l'estrazione è stata completamente casuale, ci si deve attendere che il rapporto fra 50 e il numero totale dei coriandoli contenuti sia identico al rapporto tra 2 e il numero (70) dei coriandoli estratti la seconda volta.

J2. (7 punti) Osservando da lontano due sfere di raggi diversi, esse ti appaiono della stessa grandezza (come, ad esempio, potrebbe accadere per il sole e per la luna). Tuttavia, la distanza della più grande da te è 100 volte la distanza della più piccola (assumi che le distanze siano stimate tra te e i centri delle sfere). Quanto vale il rapporto fra il volume della più grande e il volume della più piccola?

Risposta: 1.000.000.

Soluzione. Per similitudine tra triangoli rettangoli, il raggio della sfera più grande deve essere 100 volte il raggio della sfera più piccola.

J3. (11 punti) Dieci recipienti, non necessariamente della stessa capacità, che possiamo considerare illimitata, contengono ciascuno acqua, non necessariamente nella stessa quantità. Effettuiamo alcuni travasi tra i recipienti; per ogni recipiente, ad ogni travaso, annotiamo la quantità di acqua immessa o prelevata. Ad esempio denotati i recipienti con A, B ecc. e usando sempre la stessa unità di misura potremmo avere un'annotazione come

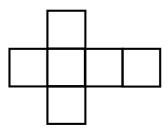
	Α	В	С	D	Е	F	G	Н	Ι	J
travaso 1	+ 1	0	0	0	0	0	0	0	0	-1

Al termine di queste operazioni si vuole ripristinare in ogni recipiente la quantità di acqua iniziale, minimizzando il numero di travasi. Adottando un'opportuna strategia, quanti travasi potranno essere necessari, al massimo?

Risposta: 9.

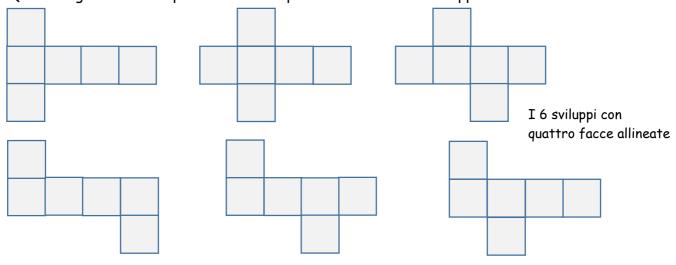
Soluzione. 9 travasi potrebbero essere necessari: ad esempio, potrebbe accadere che un solo recipiente si trovi ad avere più acqua di quella iniziale e tutti gli altri 9 di meno. Al più 9 travasi sono però sufficienti. Basta iniziare a travasare l'acqua in eccesso da un recipiente che ha il bilancio positivo in uno che ha il bilancio negativo (se vi sono bilanci positivi, ve ne devono essere di negativi, poiché la somma dei bilanci è 0), annotando la variazione di bilancio: a questo punto almeno un recipiente è tornato alla condizione iniziale. Si ripete ora la stessa operazione sui 9 recipienti restanti relativamente ai nuovi bilanci e quindi la si itera altre 7 volte. Poiché ad ogni passo la somma algebrica dei bilanci è 0, al termine tutti i recipienti saranno tornati alla condizione iniziale.

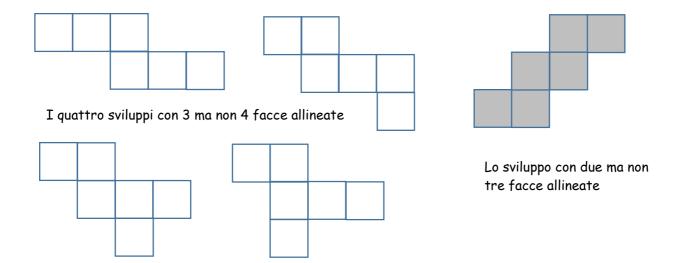
J4. (14 punti) In figura vedi uno sviluppo piano di un cubo, cioè un possibile accostamento in piano delle facce del cubo in modo da poter ricostruire il cubo piegando opportunamente la figura lungo i lati comuni a due facce. Quanti sviluppi piani diversi fra loro ha un cubo, considerando identici due sviluppi ottenibili uno dall'altro per rotazioni e/o riflessioni?



Risposta: 11.

Soluzione. Ovviamente non possono esserci sviluppi con 6 o 5 facce allineate. Considerati identici due sviluppi ottenibili uno dall'altro per rotazioni e/o riflessioni, ce ne sono 6 con quattro facce allineate, 4 con tre (ma non quattro) facce allineate, 1 con due (ma non tre) facce allineate. Questa argomentazione prova che non ci possono essere altri sviluppi.





J5. (18 punti) Hai una griglia rettangolare di m righe e n colonne e vuoi riempirla inserendo, uno per ogni casella, tutti numeri interi da 1 a $m \times n$ in modo che la somma dei numeri inseriti in ciascuna colonna sia sempre la stessa al variare delle colonne. Rispondi alle seguenti domande giustificando le tue risposte. Puoi riuscirci quando

- a) m = 2021 e n = 2020?
- **b)** m = 2020 e n = 2021?

Risposta: a) No; b) Sì.

Soluzione. a) Perché siano soddisfatte le richieste, la somma dei numeri che compaiono in ogni colonna dovrebbe essere

$$\frac{m \times n \times (m \times n + 1)}{2 \times n} ,$$

numero chiaramente non intero se m è dispari e n è pari.

b) Se invece m è pari l'operazione è sempre possibile: ad esempio basta disporre nella prima riga i primi n interi dispari a crescere e nell'ultima gli ultimi n interi pari a decrescere, nella seconda i primi n interi dispari non già inseriti a crescere e nella penultima gli ultimi n interi pari non già inseriti a decrescere e così via fino alle righe m/2 e 1 + m/2. Infatti in questo modo su ogni colonna la somma dei 2 numeri contenuti nelle coppie di righe (1, m), (2, m-1), ..., (m/2, 1 + m/2) è sempre $m \times n + 1$.

J6. (22 punti) Dimostra che, per qualunque *n*-upla $c_1, c_2, ..., c_n$ di numeri positivi il cui prodotto sia 1, si ha

$$c_1 + c_2 + ... + c_n \ge n$$
.

Soluzione. Procediamo per induzione su n. L'affermazione è vera per n = 1. Siano ora $\{c_1, c_2, ..., c_{n+1}\}$ n + 1 numeri positivi il cui prodotto sia 1. Senza ledere la generalità

possiamo supporre che siano già ordinati in ordine crescente, dunque che si abbia

$$c_1 \le 1 e c_{n+1} \ge 1$$
.

Per l'ipotesi di induzione si ha $c_2 + c_3 + ... + c_n + c_{n+1} \times c_1 \ge n$, da cui

$$c_1 + c_2 + ... + c_n + c_{n+1} \ge n + c_{n+1} + c_1 - c_{n+1} \times c_1 = n + c_{n+1} (1 - c_1) + c_1 - 1 + 1 =$$

= $n + 1 + (c_{n+1} - 1)(1 - c_1) \ge n + 1$.